Copied to
clipboard

G = C62.25C32order 324 = 22·34

16th non-split extension by C62 of C32 acting via C32/C3=C3

metabelian, soluble, monomial

Aliases: C62.25C32, C9⋊A43C3, (C3×C9)⋊5A4, (C9×A4)⋊1C3, (C6×C18)⋊9C3, C9.6(C3×A4), C32⋊A4.4C3, (C2×C6).3C33, C3.4(C32×A4), C32.A410C3, (C3×A4).2C32, C32.14(C3×A4), (C2×C18).6C32, C221(C9○He3), C3.A4.1C32, SmallGroup(324,128)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C62.25C32
C1C22C2×C6C3×A4C9×A4 — C62.25C32
C22C2×C6 — C62.25C32
C1C9C3×C9

Generators and relations for C62.25C32
 G = < a,b,c,d | a6=b6=c3=1, d3=b2, ab=ba, cac-1=ab-1, ad=da, cbc-1=a3b4, bd=db, cd=dc >

Subgroups: 205 in 76 conjugacy classes, 36 normal (12 characteristic)
C1, C2, C3, C3, C22, C6, C9, C9, C9, C32, C32, A4, C2×C6, C2×C6, C18, C3×C6, C3×C9, C3×C9, He3, 3- 1+2, C3.A4, C2×C18, C2×C18, C3×A4, C62, C3×C18, C9○He3, C9×A4, C9⋊A4, C32.A4, C32⋊A4, C6×C18, C62.25C32
Quotients: C1, C3, C32, A4, C33, C3×A4, C9○He3, C32×A4, C62.25C32

Smallest permutation representation of C62.25C32
On 54 points
Generators in S54
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 19)(9 20)(10 46 16 52 13 49)(11 47 17 53 14 50)(12 48 18 54 15 51)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)
(1 7 4)(2 8 5)(3 9 6)(10 49 13 52 16 46)(11 50 14 53 17 47)(12 51 15 54 18 48)(19 25 22)(20 26 23)(21 27 24)(28 42 31 45 34 39)(29 43 32 37 35 40)(30 44 33 38 36 41)
(1 49 31)(2 50 32)(3 51 33)(4 52 34)(5 53 35)(6 54 36)(7 46 28)(8 47 29)(9 48 30)(10 42 24)(11 43 25)(12 44 26)(13 45 27)(14 37 19)(15 38 20)(16 39 21)(17 40 22)(18 41 23)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(10,46,16,52,13,49)(11,47,17,53,14,50)(12,48,18,54,15,51)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42), (1,7,4)(2,8,5)(3,9,6)(10,49,13,52,16,46)(11,50,14,53,17,47)(12,51,15,54,18,48)(19,25,22)(20,26,23)(21,27,24)(28,42,31,45,34,39)(29,43,32,37,35,40)(30,44,33,38,36,41), (1,49,31)(2,50,32)(3,51,33)(4,52,34)(5,53,35)(6,54,36)(7,46,28)(8,47,29)(9,48,30)(10,42,24)(11,43,25)(12,44,26)(13,45,27)(14,37,19)(15,38,20)(16,39,21)(17,40,22)(18,41,23), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(10,46,16,52,13,49)(11,47,17,53,14,50)(12,48,18,54,15,51)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42), (1,7,4)(2,8,5)(3,9,6)(10,49,13,52,16,46)(11,50,14,53,17,47)(12,51,15,54,18,48)(19,25,22)(20,26,23)(21,27,24)(28,42,31,45,34,39)(29,43,32,37,35,40)(30,44,33,38,36,41), (1,49,31)(2,50,32)(3,51,33)(4,52,34)(5,53,35)(6,54,36)(7,46,28)(8,47,29)(9,48,30)(10,42,24)(11,43,25)(12,44,26)(13,45,27)(14,37,19)(15,38,20)(16,39,21)(17,40,22)(18,41,23), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,19),(9,20),(10,46,16,52,13,49),(11,47,17,53,14,50),(12,48,18,54,15,51),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42)], [(1,7,4),(2,8,5),(3,9,6),(10,49,13,52,16,46),(11,50,14,53,17,47),(12,51,15,54,18,48),(19,25,22),(20,26,23),(21,27,24),(28,42,31,45,34,39),(29,43,32,37,35,40),(30,44,33,38,36,41)], [(1,49,31),(2,50,32),(3,51,33),(4,52,34),(5,53,35),(6,54,36),(7,46,28),(8,47,29),(9,48,30),(10,42,24),(11,43,25),(12,44,26),(13,45,27),(14,37,19),(15,38,20),(16,39,21),(17,40,22),(18,41,23)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

60 conjugacy classes

class 1  2 3A3B3C3D3E···3J6A···6H9A···9F9G9H9I9J9K···9V18A···18R
order1233333···36···69···999999···918···18
size13113312···123···31···1333312···123···3

60 irreducible representations

dim11111133333
type++
imageC1C3C3C3C3C3A4C3×A4C3×A4C9○He3C62.25C32
kernelC62.25C32C9×A4C9⋊A4C32.A4C32⋊A4C6×C18C3×C9C9C32C22C1
# reps1612422162618

Matrix representation of C62.25C32 in GL3(𝔽19) generated by

1800
070
008
,
700
0120
0012
,
010
001
100
,
1600
0160
0016
G:=sub<GL(3,GF(19))| [18,0,0,0,7,0,0,0,8],[7,0,0,0,12,0,0,0,12],[0,0,1,1,0,0,0,1,0],[16,0,0,0,16,0,0,0,16] >;

C62.25C32 in GAP, Magma, Sage, TeX

C_6^2._{25}C_3^2
% in TeX

G:=Group("C6^2.25C3^2");
// GroupNames label

G:=SmallGroup(324,128);
// by ID

G=gap.SmallGroup(324,128);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,115,650,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^3=1,d^3=b^2,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,c*b*c^-1=a^3*b^4,b*d=d*b,c*d=d*c>;
// generators/relations

׿
×
𝔽